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Abstract: A principal argument in the rational expectations literature is the optimality of
predictable policy. This paper illustrates that this claim does not hold in a world of
parametric uncertainty for two reasons: (1) completely noiseless policy may lead to non—
convergence to the true model parameters; (2) highly predictable policy is not very
informative about the structure of the model. A series of examples illustrate the

ramifications for macroeconomic policy.
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INTRODUCTION

This paper examines the implications of learning for
macroeconomic policy. In an environment in which the
parameters of a structural model are unknown to economic
agents, optimal policy differs strongly from the conventional
wisdom. The leading argument in the rational expectations
literature is policy ineffectiveness; that is, policy doesn't
matter as long as its predictable. This translates into simple
dictates for the monetary authority like k% growth rules.

Learning reverses the conventional wisdom in two ways.
First, policy may be so predictable that it prevents economic
agents from arriving at the true parameters of the structural
model. Policy must continually vary for limiting belicfs to
converge to rational expectations. Second, in dynamic
models, optimal multi-period actions may differ greatly from
the one—period maximizing policy. There may be incentives
for the policy makers to use control variables in such a way
as to ensure convergence of beliefs. Through a series of
counter—examples in the spirit of Sargent and Wallace(1975),
we present the dramatic implications of these conclusions for
popular macroeconomic models.

We draw heavily on a wide-ranging literature. In studying
the convergence of sequentially updated beliefs, we draw on
the work of Taylor(1974), Jordan(1985) and Kiefer and
Nyarko(1987). The problem of stochastic control has its
origins in Blackwell's(1953) work on experimentation. He
reformulated this question into the dynamic programming
framework in a subsequent paper, Blackwell(1965). The
{inite parameter case we study here is closely related to the
bandit problem. Rothschild(1974) first introduced this to the
economic literature. McLennan(1984) presented an example
of incomplete learning by a monopolist facing an unknown
demand curve.

Prescott(1972) and Chow(1981) discuss applications of
stochastic control to economic policy. Drawing on the recent
work of Easley and Kiefer(1988) and McLennnan(1987) we
extend this to a more general setting and provide an explicit
characterization of the optimal policy.

i

Section II states sufficient conditions for the almost sure
convergence of parameter estimates for a Bayes learner.
Learning requires fluctuations in the independent variables,
andwhen this is lacking, we have non—convergence to
rational expectations.

We consider two examples in Section III in which policy is
the critical factor in learning: the Cagan hyper—inflationary
model of money demand and an expectations model of the
term structure of interest rates. Both fixed rate growth rules
and interest pegging are shown to be barriers to learning on
the part of agents. The paper poses this paradox: while
predictability in the policy environemnt is desirable in that it
eliminates uncertainty over expectations of policy variables, in
the absence of precise knowledge of the model's parameters,
the agent cannot come to learn them over time in these
examples.

We turn in Section IV to the issue of optimal policy in a
stochastic control situation. We prove conditions that will
give the monetary authority incentive to learn the model's
paramters. As in the bandit problems, the policy authority
trades off current reward for future gains. We offer two
counter—examples in which the solution under certainty is
very different from the case with parametric uncertainty.
Poole's(1970) work on choice of monetary instruments in a
stochastic IS/LM model is given a strikingly different
interpretation. We show that the monetary authority may
choose to use a money stock policy even when the interest
pegging policy loss is initially higher. The second model is
the Lucas—Sargent=Wallace model of aggregate supply. Here
we show that if the monetary authority finds it optimal to
learn the true parameters, the k% growth rule can never be
optimal. We summarize the implications for rational
expectations theory of these findings in a closing section.

NON-CONVERGENCE
The Environment

Let Q be a complete and separable metric space, let F be its
Borel field, and let P be the set of probability measures on
E.! Consider a stochastic process (y;]*== defined on the

[1] A useful reference for this material is Billingsley(1979).



probability space (£2,F,P) , whose distribution, conditional on
a choice variable, x; € X, depends upon parameters, 8 € ©,
unknown to the economic agent. Let p(y|x,0) be the density
with respect to the measure P on Q.

Assume the following: (A1) X, the action space, is a compact
subset of Rk; (A2) © = {8, 01,.....6m} is a finite set; (A3)
(i) The density function p(.| ) is jointly continuous; (ii) For
all (x,0) € X x O, Y={y:p(y|x,8) > 0}; Prior beliefs are
described by L € A(®), where A is the set of probability
measures on @, The agent is presumed to be a Bayes
learner, meaning that he updates beliefs based upon
observables according to I': A(@) x X x Y — A(@)

_A@pelex)
Tl Ax9) = S 010 M

Under our assumptions, McLennan(1987) proves continuity
of the Bayes map I'.

We will be working exclusively with the two parameter linear
regression model

= o+ Bx +g 2)

which implies for (A1) k=1 and 8"=(c,8). We add the
additional assumption: (A4) g ~ i.i.d. (0,0¢2 < eo);
This indicates that the disturbance term is a mean zero,
independently distributed, random variable, with known,
finite variance.

Conditions for Convergence of the Bayes Estimator

We state at the outset the main result. A formal proof may
be found in Kiefer and Nyarko(1987). We offer an intuitive
discussion below.

Proposition I: Consider the linear regression model (2). If
{x1)=1=1 € R* converges to some value X, lim_ye X{ = X,
then the limiting posterior distribution, .., will converge to a
posterior process with support a subset of the set {(c, B');
o + B'X = o + Px]}, where o and B are the "true”
parameter values. If x; does not converge, then p; will
converge 1o a point mass concentrated on the "true" parameter
value.

Proof: Kiefer and Nyarko(1987).1

The intuition2 is best understood in terms of the of the sum
of squared residuals. As noted in Zellner(1971),

Ti=0™ (x¢ — E[x]))2 = oo, is a sufficient condition for
convergence of the posterior process to 8 = (a,B), the true
parameter vector. In the least squares context, the condition
is slightly stronger3, but the intuition is that the if the sum of
squared residuals goes to infinity, the Bayes estimator is
strongly consistent.

For every realization of x,, there will be an associated
realization for y;. The y's will be noisy though due to the
disturbance term. For n realizations of a given xy, say X,
Tieo"Fi/n). = o + Bx + Zi=o"(gi/n). From the strong law of
large numbers on the disturbance term Zi=g"(gi/n) — 0 as
n— es, then if we define y* = lim n— e of Zi-g"(yi/n) —
0, there exists some &, P satisfying ¥* = & + px by
linearity. There are however, a continuum of values for &
and f} that will satisfy this equation. This explains the first
part of the proposition.

[2] We still rely heavily here on Kiefer and Nyarko(1987).

Consider another value for x, say x, such that x'#x. This
determines a second equation with lim n— e Zi=g"(y'i/n)
=y"™. An alternating sequence of realizations for x between
% and x' is sufficient for the Zellner condition to be fulfilled.
In our context, the two equations, one for ¥* and y", are
sufficient to define a unique &* and B* satisfying the two
equations. We can then be assured that & and B* are
consistent for y.

In closing this section, we note that this equations and
unknowns approach is utilized in a paper by Nyarko(1988) to
extend some of these results to the multivariate case.

EXAMPLES OF NON-CONVERGENCE

The Cagan Hyper—Inflation Model

Cagan(1956) postulates the following equation for money
demand in a hyperinflationary economy:

MY
P
where Md is nominal money demand, P is the price level, 1*
is the expected rate of inflation, and K and 7 are parameters.
Define:

=K e‘ﬂ.“‘l (3)

Md
log(5) = md - pi = log(K ey =k - nx’, @
7"y = Eyflog(Py41) — log(PY] = Eilpur] — py )

Cagan assumes that the price level clears the money market
every period, py =m; — k + ¥ Solving recursively, as in
Mussa(1975)

Sy ©)

1 [--]
Eilpint] = 7o 2 (Eymu14i) — kX
141 i=0 ] 141

Let us assume that the monetary authority follows a constant
rate growth rule my = pmy_1, then

zEx(mu 1+)) = EHijj 7
=0 =0

We can then re—write (6) as

1 AP Nl i
T mel(lﬂ]}'— 1 ZR(H‘T}' (8)
j=0 j=0

Assuming that the processes in (8) are convergent, (un/1+n).
(M/1+1) < 1, we have

my+] 1 k 1
Eilpi1] = T T 9
= 1+ﬂ‘ h.&n.} T 1__71_} it
14m 141

If we take [, M, and k to be constants, then E[ppsj+n) —
pun for n = 1,2,... will also be a constant.

We can now use Proposition I to prove that a representative
agent will not converge to consistent beliefs about the
unknown parameters k and 7, since %, =% Vt. An
anticipated monetary policv is still called for to help agents

[3] A sufficient condition for consistency of the least squares
estimator is Ag(X'X) — oo, where Ag is the smallest
characteristic root of (X'X). For proof, see {kmcmiya(l%ﬁ).
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determines a second equation with lim n— e Zig"(y'i/n)
=y, An alternating sequence of realizations for x between
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equations. We can then be assured that & and B* are
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In closing this section, we note that this equations and
unknowns approach is utilized in a paper by Nyarko(1988) to
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If we take [, 1, and k to be constants, then E([py+1+n] —
pun for n = 1,2,.. will also be a constant.

We can now use Proposition I to prove that a representative
agent will not converge to consistent beliefs about the
unknown parameters k and 7, since n*;=% ¥V t. An
anticipated monetary policv is still called for to help agents

[3] A sufficient condition for consistency of the least squares
estimator is Ag(X'X) — oo, where As is the smallest
characteristic root of (X'X). For proof, see Amemiya(1985).



learn k and 7, but without a policy that varies the monetary

. growth rate between periods, Proposition I assures us of
non—convergence to rational expectations. Furthermore, a
change in the money growth rate, after agent's beliefs have
settled down in the regime L, = [1, would lead to non—rational
forecasts.

A Simple Expectations Model of the Term Structure

In this example, pegging the interest rate will be the policy
barrier, preventing agents from learning the slope of the term
structure equation. An approximation of the relation between
long and short term interest rates, Ry and r; is given by*

oo
Ri =0 + (1) 2 Emuk +& (10)
k=0
where @ is interpreted as a constant term premium, 0 <y < 1
is a constant discount factor, and € is a white noise
disturbance term.. Let us assume that agents form their
expectations of the short rate using a distributed lag on
previous short rates:

T T
Edrd =%, = 2 ¢krik Dok=1 (11)
k=0 k=0

where the ¢'s are unkown to the econometrician. Suppose
the monetary authority begins to peg the interest rate at r, =T.
According to (11), it will take T periods, but eventually the
forecast of all future short rates will be T as well. We will
now show two results: (i) the discount rate will not be
estimated consistently in a single pegging regime, (ii) it can
only be consistently estimated with k—period pegging
switches, where k corresponds to the length of the lag in
(11).

The estimation problem here is very tricky without some help
from the policy makers. The usual assumption made is that
agents have rational expectations. In which case the
econometricianestimates

Ris1 - R[=_"(1_4T)8L+ l;‘;L(R[—Tt)'P“III;_I (12)

where iy = (1=7)Zg=1"(¥ (B 1rik — Eimek)) represents the
revision in the agent's expectations. Consistent estimation of
(12) requires the assumption that v be uncorrelated with

the right hand side regressors. (11) violates this assumption

(and our A4 as well). Only with the long rate constant can
we ignore the ¢'s; successive k—period regime switches will
then enable us to estimate (10) with realized short rates.

SOME ISSUES IN STOCHASTIC CONTROL

We shift our focus now slightly away from non—existence
counterexamples to examples of otpimal policy in stochastic
environments. The critical intuiton is the tradeoff presented
in discounted control situations where the model parameters
are unknown. While large variation in the control variable is
undesirable from the point of view of the usual loss function,
it is desirable in gaining knowledge over the system's
parameters. For low discount rates, the policy authority can
trade some losses in the present for reduction of uncertainty
in the future.

[4] See Shiller(1979) for this approximation which is a
linearization of a more complicated non-linear expectations
model.

The Environment

The monetary authority is assumed to have a loss function
r(x,yy). The expected loss wi:A(@)—R, given beliefs | and
action x € X is

wixuy) = Zaly rxuy) plydx,0i)dPA(®;) (13)

where we assume that: (A5) w(x,}t) has a unique minimum in
x for beliefs pe A(®); In the examples that follow r(.,.) will
be quadratic, and (AS) will be satisfied.

The authority's objective function is to maximize the expected
present discounted value of the negation of losses

E[~ 2. 8tw(xy )] (14)
t=0

To facilitate analysis of this problem, we want to tranform
this into a dynamic programming formulation, with beliefs
forming the state space and a sequence of money balances
forming the action space.

In choosing an action today, the policy maker must consider
not only the present reward but the effect this will have on
the distribution of posterior beliefs. The optimal policy will
trade losses today for more information. We proceed
towards characterizing the set of optimal policies by writing
down the value function. Define

V(i) = max xe X [-w(x,1L)

+ SVI(x,y))[ZeM(0)p(y|x,6)]dP] (15)

This expression gives us maximum future welfare given
optimal actions for beliefs (1. This is a standard problem for
which we know, given our assumptions, (a) the value
function is well-defined; and (b) it possesses a continuous,
unique solution. See Blackwell(1965) for proof. It is not
however the case that a unique optimal policy exists. Our
discussion will instead focus on the issue of whether or not
the policy authority will pursue actions that will lead to
learning the parameters 6°.

Complete Learning

The recursivity of the value function will enable us to work
with the much simpler two period problem. Consider the
invariant action x; =X V t. The expected discounted
sequence of rewards then is easy to calculate as the agent
does not expect his current beliefs 1o to change:

E[- 2 8W(KHo) | Kol = El- 3 8'w(Ropto)]
t=1 t=1
= [-8/(1-8)Iw(X,1o) (16)

We can now readily see the link between the two—period and
multi-period problems:

Lemma 1: Let X be the unique maximum to —w(x,}lg). If X
does not solve

max(~WGHo) + pVIT(ox,y))[ZeA(@)p(y[x,601dP] )
xeX (17)

where VI(I'(.)) = —w(al(1g),1g) and p = §/(1-5), then it
does not solve (15).

Proof: Our proof follows Eusley and Kiefer(1988). Note that
from (16) for an invariant action, the multi-period value
function (15) reduces to
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Vo) = —[wx,up) + (8/(1-8))w(X.1o)]
= —(1/(1-8))w(X ,j10) (18)
Let al(up) = X, and we see that for p=5§/(1-8), they are the
same problem.ll

Next, we want to show the convexity of the value function.
This will be instrumental in giving the policy authority the
incentive to pursue actions that will yield uncertainty over
future beliefs. This means a highly variable policy. We
begin with

Lemma 2: The one—period value function is convex on A(®).

Proof: Our proof follows Marschak and Miyasawa(1968) and
Easley and Kiefer(1988). Choose any two elements from the
set of beliefs [iz,lpe A(B), and let ¢ be a convex
combination: [ =YHa + (1-y)up. Let X(1) be the maximum
of —w(x,u) for beliefs .

YV Ha) + (1-1) V1 (1p) = YV (X(Ha).Ha) + (1=7) V(X (L) p)
2 YV () be) + (1-9) VIR (Le) He)
= Vi) (19)

with the inequality based on revealed preference for a feasible
alternative, and the equality resulting from the linearity of
rewards in beliefs.l

We depart from the literature on experimentation at this point.
Prescott(1972) and Grossman, Kihlstrom and Mirman(1977)
show that larger actions x] > x7 are more informativeS, This
is sufficient to show that the policy authority will choose an
action that exceeds the optimal one~period action. Qur goal
here, though, given the recent results of McLennan(1987) and
Easley and Kiefer(1988), is to characterize conditions under
which the policy authority will pursue actions that lead to
beliefs converging to 8”.

Proposition II: If V() is convex, then there exists a 8* < 1,
such that if 8 2 8", . = 0%, almost surely.

Proof: We condense several propositions from Easley and
Kiefer(1988). Let S < © be the set of beliefs invariant for
any action al(u). By the martingale convergence theorem, [
— W, and straightforward arguments give us that the
support of P will be S. Convexity of V1(i1) along with
(A2) give us that S is finite. We need then to consider 8's
corresponding to each element in S.

Consider now some 1 € S — (6"). Letal(i) =X. From
Lemma 2, we know that X does not solve E[-w(X,[)].
There then exist 8's: 0 € 8" <8 < 1, where 8" is a critical
discount factor for which learning is incomplete, such that

x does not solve (17). By Lemma 1 then, it cannot solve the
infinite horizon problem.ll

The optimal policy choice turns on the discount factor. It is
similarly easy to show that for small & (you discount the
future highly), incomplete learning can be an optimal policy.
This is just Rothschild's(1974) two—armed bandit example,
where incomplete learning of the demand curve by an
"experimenting" monopolist is optimal. Kiefer and Nyarko
and McLennan(1984) also have examples of incomplete
learning.

[5] The motivation for this word comes from
Blackwell's(1953) theorem on the comparison of
experiments. Blackwell defines an experiment x to be more
informative than x if every loss vector w(xa,JL) is also
attainable with x1. Clearly x] > x2 is sufficient for xi to be
more informative.

For large enough & in which complete learning of 87 is
optimal, we have established that continually variable policy
may be necessary for the policy authority to maximize
welfare. We show below in two popular macroeconomic
models, the implications of these results,

STOCHASTIC CONTROL EXAMPLES

We consider two examples. The first re—examines the
conclusions for optimal policy in a stochastic IS/LM model,
and the other seeks to do the same in a rational expectations
model,

Optimal Policy in the IS/LM Model

Our first example is motivated by Poole's(1970) paper on the
choice of instruments in an IS/LM model. We demonstrate
that taking account of parametric uncertainty can reverse the
standard conclusions of that paper. Following Poole, we
pose a linear stochastic version of Hick's IS/LM model

y=ag+a;r+e a1 <0 e ~ N(0,0¢) (20)
m=bg+b1Y + bar+ v
b1 >0,bp<0 vy ~ N(0,G,) 21

where y is output, r is the interest rate, m is the money
supply (we will not even purport to distinguish between real
and nominal magnitudes), e, and vy are disturbance terms, not

assumed independent, and a's and b's are parameters.
Solving out for the reduced forms for income we get

y=ap+arr+ e (22)
y =0+ pPm +¢g (23)

where o = (agbz — ajbg)/(a1b) + b2), B = a1/(aib; + ba),
and g = (bze — a1v)/(a1b; + by).

The monetary authority's function here is to minimize a
quadratic loss around some optimal y*:

Limy) = (y* - y)2 (24)

Given no parametric uncertainty, the expected losses with r
and m as the instruments are

Lr=oce (25)

Lm = 0¢ = (a210y — 2a1ba0ey + bdy)/(aby + bp)? (26)
The standard conclusion in the static model is if o, > og
(which implies that 6y/c, < by) then a money stock policy is

to be preferred.

Consider now the case where ag, aj, o, [ are unknowns.
Assume that the agent holds a bi-variate normal prior ’

ea.plao. Bo. 20 = N((F o ) @)

and that the disturbance term is normally distributed as well.
This has the advantage of making all the subsequent posterior
distributions normal.
L; = 0y0 + 12031~ 2104041 + O¢ (28)
Ly = Gg + mZop - 2m0qp + Og (29)

Clearly, parametric uncertainty can reverse the choice of
instruments, even if G > O,



V(o) = —[wX,up) + (8/(1-8))w(X,1o)]
= —(1/(1-8))w(X ,10) (18)
Let al(jg) = X, and we see that for p=8/(1-5), they are the
same problem.ll

Next, we want to show the convexity of the value function.
This will be instrumental in giving the policy authority the
incentive to pursue actions that will yield uncertainty over
future beliefs. This means a highly variable policy. We
begin with

Lemma 2: The one—period value function is convex on A(@).

Proof: Our proof follows Marschak and Miyasawa(1968) and
Easley and Kiefer(1988). Choose any two elements from the
set of beliefs pa,upe A(®), and let Y be a convex
combination: [ =YHa + (1-y)up. Let (1) be the maximum
of —w(x,1) for beliefs .

V() + (1-1)V () = YVIE(a)ha) + =1V IE(p) 1b)
2 YVHE(e) o) + (1= VIR (He) lie)
= V() (19)

with the inequality based on revealed preference for a feasible
alternative, and the equality resulting from the linearity of
rewards in beliefs.l

We depart from the literature on experimentation at this point,
Prescott(1972) and Grossman, Kihlstrom and Mirman(1977)
show that larger actions x) > x; are more informativeS, This
is sufficient to show that the policy authority will choose an
action that exceeds the optimal one-period action. Qur goal
here, though, given the recent results of McLennan(1987) and
Easley and Kiefer(1988), is to characterize conditions under
which the policy authority will pursue actions that lead to
beliefs converging to 8",

Proposition II: If V() is convex, then there exists a 8 < 1,
such that if 8 2 8", o = 6%, almost surely.

Proof: We condense several propositions from Easley and
Kiefer(1988). Let S < © be the set of beliefs invariant for
any action al(p). By the martingale convergence theorem, [t
= U, and straightforward arguments give us that the
support of fe will be S. Convexity of VI(i) ulong with
(A2) give us that S is finite. We need then to consider §'s
corresponding to each element in S.

Consider now some 1 € S — (8"). Letal(i) =X. From
Lemma 2, we know that X does not solve E[-w(X,{)].
There then exist 8's: 0 < 8" <8 < 1, where 8" is a critical
discount factor for which learning is incomplete, such that

x does not solve (17). By Lemma 1 then, it cannot solve the
infinite horizon problem.ll

The optimal policy choice turns on the discount factor, It is
similarly easy to show that for small 8 (you discount the
future highly), incomplete learning can be an optimal policy.
This is just Rothschild's(1974) two—armed bandit example,
where incomplete learning of the demand curve by an
"experimenting” monopolist is optimal. Kiefer and Nyarko
and McLennan(1984) also have examples of incomplete
learning.

[5] The motivation for this word comes from
Blackwell's(1953) theorem on the comparison of
experiments. Blackwell defines an experiment x; to be more
informative than x3 if every loss vector w(xa,|) is also
attainable with x1. Clearly x] > x2 is sufficient for x; to be
more informative.

For large enough & in which complete learning of 8° is
optimal, we have established that continually variable policy
may be necessary for the policy authority to maximize
welfare. We show below in two popular macroeconomic
models, the implications of these results.

STOCHASTIC CONTROL EXAMPLES
We consider two examples. The first re-examines the
conclusions for optimal policy in a stochastic IS/LM model,

and the other seeks to do the same in a rational expectations
model,

Optimal Policy in the IS/LM Model

Qur first example is motivated by Poole's(1970) paper on the
choice of instruments in an IS/LM model. We demonstrate
that taking account of parametric uncertainty can reverse the
standard conclusions of that paper. Following Poole, we
pose a linear stochastic version of Hick's IS/LM model

y=ag+air+e ap <0 e ~ N(O,ce) (20)
m=by+b1Y + bar+ v
by >0, bp <0 v ~ N(©O,0y) 210

where y is output, r is the interest rate, m is the money
supply (we will not even purport to distinguish between real
and nominal magnitudes), ¢; and vy are disturbance terms, not
assumed independent, and a's and b's are parameters.
Solving out for the reduced forms for income we get

y=apt+amr+e (22)
y=0o+pm +g (23)

where o = (agbz — ajbp)/(a1by + b2), P = a1/(a1b; + ba),
and € = (bae — ajv)/(aiby + by).

The monetary authority's function here is to minimize a
quadratic loss around some optimal y*:

Limy) = (y" - y)? (24)

Given no parametric uncertainty, the expected losses with r
and m as the instruments are

Lr=0¢ (25)

Lm = O¢ = (a%10y — 2a1by0ey + bZ)/(a;by + by)? (26)
The standard conclusion in the static model is if o, > o¢
(which implies that oy/c; < by) then a money stock policy is

to be preferred.

Consider now the case where ag, a1, o, B are unknowns.
Assume that the agent holds a bi—variate normal prior

neaplao. Bo. 20 =N (o) @)

and that the disturbance term is normally distributed as well.
This has the advantage of making all the subsequent posterior
distributions normal.
L; = Oy + 120,31~ 2r040a] + Oc (28)
L = 6g + m20p — 2moqp + O (29)

Clearly, parametric uncertainty can reverse the choice of
instruments, even if O > G,



Now turn to the multi-period problem. We want to show
that the single period results can be reversed for policy
"experimentation” reasons in the multi-per od case. We
assume that, given prior beliefs, Ly > Ly, but G¢ > g, s0
that in the absence of parametric uncertain v, the money stock
policy would be preferred. We show now it may be optimal
to use the money stock policy, even thoug 1 its one period
loss for initial beliefs is higher.

Let's map this problem into the environme it of Section IV.
The value function is given by (15) with maximization for m
e [0,m] and with

w(m,p) = —Zefy(y"~a—Pm—e)2p(yi|m;, 6;) dPA(S;)  (30)

The minimum one—period loss would be to choose m* =
(y'—&),f En PII implies that this cannot solve the infinite
horizon problem for high enough discount factors. Further
more, no constant money stock policy mg= i can be optimal
either.

Some Surprises for the Lucas Supply Function?

Our structure for this problem posits that output is given
solely by a Lucas "surprise” supply function:

yi=o+ Blpi— p&) + &1 & ~ N(0,G¢) 31

y is output, p are prices and p® is their expected level. We
assume that prices react to the money stock, m, and real
disturbances, &:

p=m + & £ ~ iid. N(O,08) (32)

Given our i.i.d. assumption on the real shocks,

P& =m% (33)

The monetary authority's role is assumed to be minimizing
the variance of output. In the case where monetary policy is
perfectly anticipated but & and B are unknown, we linearize

through a Taylor expansion around [3 =B, E=E=0: Bt
= BE + B(E-E) + E(B-P) = PE. The variance of output is

var(y) = Gg + p2og — 2Boaz + O (34)

We want to show that it might be optimal for the monetary
authority to undertake unpredictable policy. To keep the
problem simple, we will assume that the expected value for m
is some target value for the money supply, say my. In this
case, the variance of output is

var(y) = Og + P20¢ + (m? - m2)op — 2Boez
- 2(m— m)Cqp — 2(my — m)OpE. (35)

which is larger than (34), except in the unlikely instance that
the monetary authority's beliefs about the parameters were
correlated with the real shocks. If we took a and P to be
structural parameters, we could safely assume these
covariances were zero.

The monetary authority pays one quadratic price for its
deception, equal to (m% — m2)op. Suppose though that G,
were very large (given that it proxies the natural rate, it is not
farfetched), then we would be in the situation of the first
example. We might want to trade some current period losses
for future gains.

The Fed could come to learn o and B solely through the

effects of the real shocks &,X=qT(E—0)2 —ee as T — =, s0
we are assured of convergence. Without these shocks, the
Fed would have to pursue "experimentation.” Only an
infinite series of surprises from the monetary authority would
maximize the value function. Any predictable monetary
policy would be sub—optimal.

CONCLUSIONS

Learning must be studied explicitly we think for two reasons.
The first is that rational expectations cannot properly be
regarded as the limitation of all learning processes. Beliefs
do always settle down (there is a point at which beliefs no
longer change), but as Section II revealed, beliefs may not
converge to the true structural model.

The second reason concerns questions of policy. The idea
that anticipated monetary policy is neutral has become
conventional wisdom in macroeconomics. We have
demonstrated that this is only true in a world in which the
only uncertainty is over policy. Parametric uncertainty is
sufficient to make this statement quite inaccurate.

We have also given a new perspective on volatility. Usually
this is regarded as a bad thing, since most loss or utility

functions are quadratic. In the multi-period control problem
though, variability is informative about the future. Weighing
short—term losses against long—term gains is particularly
important for policy authorities with long horizons.

A series of counter—examples were presented in the same
spirit as Sargent and Wallace(1975). Their work motivated
macroeconomists to look fundamentally at the question of
expectations. This paper has entirely the same objective.
Recent advances in the learning literature though have enabled
us to move a step closer towards bringing expectations
formation into the optimizing paradigm. We feel as though

. the implications for policy are as challenging to the

conventional wisdom as the original contributions by the
rational expectations school.
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Now turn to the multi-period problem. We want to show
that the single period results can be reversed for policy
"experimentation” reasons in the multi-per od case. We
assume that, given prior beliefs, Ly > L;. but G¢ > G, 50
that in the absence of parametric uncertain v, the money stock
policy would be preferred. We show now it may be optimal
to use the money stock policy, even thoug 1 its one period
loss for initial beliefs is higher.

Let's map this problem into the environmeat of Section IV.
The value function is given by (15) with muximization for m
€ [0,m] and with

w(m,p) = ~Zely(y*-o—Pm-e)?pyim;, 6;) dPAB)  (30)

The minimum one-period loss would be to choose m® =
(y*~0)/B. PII implics that this cannot solve the infinite
horizon problem for high enough discount factors. Further
more, no constant money stock policy mg = i can be optimal
either.

Some Surprises for the Lucas Supply Function?

Our structure for this problem posits that output is given
solely by a Lucas "surprise” supply function:

yi=o + B(pi— p%) + & & — N(0,0¢) (31)

y is output, p are prices and p® is their expected level. We
assume that prices react to the money stock, m, and real
disturbances, &:

pie Ay & ~ iid. N(O,cp) (32)

Given our i.i.d. assumption on the real shocks,
P& =m% (33)

The monetary authority's role is assumed to be minimizing
the variance of output. In the case where monetary policy is
perfectly anticipated but o and B are unknown, we linearize
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= BE + B(E-E) + E(B-P) = PE. The variance of output is

var(y)) = 0 + P20t — 2B0qt + Oe (34)

We want to show that it might be optimal for the monetary
authority to undertake unpredictable policy. To keep the
problem simple, we will assume that the expected value for m
is some target value for the money supply, say my. In this
case, the variance of output is
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which is larger than (34), except in the unlikely instance that
the monetary authority's beliefs about the parameters were
correlated with the real shocks. If we took @ and P to be
structural parameters, we could safely assume these
covariances were zero.

The monetary authority pays one quadratic price for its
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CONCLUSIONS
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regarded as the limitation of all learning processes. Beliefs
do always settle down (there is a point at which beliefs no
longer change), but as Section II revealed, beliefs may not
converge to the true structural model.

The second reason concerns questions of policy. The idea
that anticipated monetary policy is neutral has become
conventional wisdom in macroeconomics. We have
demonstrated that this is only true in a world in which the
only uncertainty is over policy. Parametric uncertainty is
sufficient to make this statement quite inaccurate.

We have also given a new perspective on volatility. Usually
this is regarded as a bad thing, since most loss or utility

functions are quadratic. In the multi-period control problem
though, variability is informative about the future. Weighing
short—term losses against long—term gains is particularly
important for policy authorities with long horizons.

A series of counter—examples were presented in the same
spirit as Sargent and Wallace(1975). Their work motivated
macroeconomists to look fundamentally at the question of
expectations. This paper has entirely the same objective.
Recent advances in the learning literature though have enabled
us to move a step closer towards bringing expectations
formation into the optimizing paradigm. We feel as though

. the implications for policy are as challenging to the

conventional wisdom as the original contributions by the
rational expectations school.
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NON-CONVERGENCE TO RATIONAL EXPECTATIONS AND OPTIMAL

MONETARY POLICY IN MODELS WITH LEARNING

Bruce Mizrach, Department of Economics, Boston College, Chestnut Hill, MA USA

Abstract: A principal argument in the rational expectations literature is the optimality of
predictable policy. This paper illustrates that this claim does not hold in a world of
parametric uncertainty for two reasons: (1) completely noiseless policy may lead to non—
convergence to the true model parameters; (2) highly predictable policy is not very
informative about the structure of the model. A series of examples illustrate the

ramifications for macroeconomic policy.

Keywords: Learning systems; Bayes methods; stochastic control; dynamic programming;

INTRODUCTION

This paper examines the implications of learning for
macroeconomic policy. In an environment in which the
parameters of a structural model are unknown to economic
agents, optimal policy differs strongly from the conventional
wisdom. The leading argument in the rational expectations
literature is policy ineffectiveness; that is, policy doesn't
matter as long as its predictable. This translates into simple
dictates for the monetary authority like k% growth rules.

Learning reverses the conventional wisdom in two ways.
First, policy may be so predictable that it prevents economic
agents from arriving at the true parameters of the structural
model. Policy must continually vary for limiting beliefs to
converge to rational expectations. Second, in dynamic
models, optimal multi-period actions may differ greatly from
the one—period maximizing policy. There may be incentives
for the policy makers to use control variables in such a way
as to ensure convergence of beliefs. Through a series of
counter—examples in the spirit of Sargent and Wallace(1975),
we present the dramatic implications of these conclusions for
popular macroeconomic models.

We'draw heavily on a wide-ranging literature. In studying
the convergence of sequentially updated beliefs, we draw on
the work of Taylor(1974), Jordan(1985) and Kiefer and
Nyarko(1987). The problem of stochastic control has its
origins in Blackwell's(1953) work on experimentation. He
reformulated this question into the dynamic programming
framework in a subsequent paper, Blackwell(1965). The
finite parameter case we study here is closely related to the
bandit problem. Rothschild(1974) first introduced this to the
economic literature. McLennan(1984) presented an example
of incomplete learning by a monopolist facing an unknown
demand curve,

Prescott(1972) and Chow(1981) discuss applications of
stochastic control to economic policy. Drawing on the recent
work of Easley and Kiefer(1988) and McLennnan(1987) we
extend this to a more general setting and provide an explicit
characterization of the optimal policy.

Section II states sufficient conditions for the almost sure
convergence of parameter estimates for a Bayes learner.
Learning requires fluctuations in the independent variables,
andwhen this is lacking, we have non—convergence to
rational expectations.

We consider two examples in Section III in which policy is
the critical factor in learning: the Cagan hyper—inflationary
model of money demand and an expectations model of the
term structure of interest rates. Both fixed rate growth rules

. and interest pegging are shown to be barriers to learning on

the part of agents. The paper poses this paradox: while
predictability in the policy environemnt is desirable in that it
eliminates uncertainty over expectations of policy variables, in
the absence of precise knowledge of the model's parameters,
the agent cannot come to learn them over time in these
examples.

We turn in Section IV to the issue of optimal policy in a
stochastic control situation. We prove conditions that will
give the monetary authority incentive to learn the model's
paramters. As in the bandit problems, the policy authority
trades off current reward for future gains. We offer two
counter—examples in which the solution under certainty is
very different from the case with parametric uncertainty.
Poole's(1970) work on choice of monetary instruments in a
stochastic IS/LM model is given a strikingly different
interpretation. We show that the monetary authority may
choose to use a money stock policy even when the interest
pegging policy loss is initially higher. The second model is
the Lucas—Sargent—-Wallace model of aggregate supply. Here
we show that if the monetary authority finds it optimal to
learn the true parameters, the k% growth rule can never be
optimal. We summarize the implications for rational
expectations theory of these findings in a closing section.

NON-CONVERGENCE
The Environment

Let Q be a complete and separable metric space, let F be its
Borel field, and let P be the set of probability measures on
F.l Consider a stochastic process {y;}*1 defined on the

[1] A useful reference for this material is Billingsley(1979).





